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Introduction
Biosensors of the future promise to be as ubiquitous as mobile 

phones, and if current sensing trends continue, the mobile phone itself 
could become an integrated platform for everyday use. For example, 
biosensors could bring about the next revolution in public health 
monitoring in third-world countries, providing low-cost point-of-care 
solutions with advanced diagnostic capabilities. Homeland security 
and the spread of disease could be monitored in real time, and the 
impact could be minimized through embedded sensors throughout 
the public transportation system. As technology continues to advance, 
biosensors could truly become a part of everyday life, employing social 
media and personal electronic devices to fuse biosensed data from the 
real world into virtual realities. There are several technological barriers 
that must be overcome before this scope and intensity is fully realized 
[1]. In this paper we review exciting trends in the development of 
synthetic reagents, fluidic integration, and personal electronic devices 
as platforms that are necessary for ubiquitous biosensing capabilities 
(Figure 1).

Biosensors comprise two primary components: the bioreceptor, or 
recognition reagent responsible for specific binding to the biological 

analyte of interest, and the transducer, which converts this binding 
event to a measureable signal (Figure 2) [1,2]. A variety of bioreceptors 
(nucleic acid, antibody, etc.) can be used to bind to an analyte or 
target of interest, and similarly, a variety of transduction mechanisms 
have been used to translate this recognition event into an electronic 
signal (e.g., mass, electrochemical, optical, magnetic, label-free, etc.) 
[3,4]. Significant limitations in bioreceptor function and production, 
as well as in the overall size, weight, and cost (SWaP-C) of the 
transducer, have been the primary technological barriers to the vision 
of ubiquitous biosensing. Ideally, a bioreceptor reagent should have the 
characteristics outlined in table 1 to enable ubiquitous implementation 
across a variety of material systems and operational environments.

The bioreceptor (i.e., reagent) must be robust and resistant to 
degradation stressors encountered in real-world applications, including 
temperature extremes (cold and heat), pH variations, enzymes, etc. [5]. 
Furthermore, the ideal bioreceptor should be not only robust, but also 
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thermoplastic in nature (i.e., operational at elevated temperatures). 
The current state-of-the-art in reagent technology (i.e., antibody 
bioreceptors) capable of recognizing protein biomarkers and toxins 
(i.e., nongenetic materials) is fraught with difficulties including poor 
mass production, stability, and large overall production costs.

Many research groups have investigated and developed synthetic 
chemical and biological affinity reagent alternatives in an attempt to 
overcome limitations in natural protein antibody-based recognition. 
Most commonly these include nucleic acid aptamer, phage display, 
yeast display bacterial display, mRNA display, and one-bead-one-
compound solid phase chemical libraries technologies [6-17]. 

Synthetic Reagents
Recent advances in synthetic affinity reagent technology and 

discovery have shown the potential to meet all of the desired features 
of ubiquitous biosensor bioreceptors outlined in table 1. In addition to 
the stability, a key advantage of many synthetic reagent technologies 
is the speed at which they can be discovered, a critical capability 
when considering rapidly changing detection needs, including newly 
engineered threat agents to which no current bioreceptor technologies 
exist. Antibodies usually require several weeks to months to isolate 
from living hosts, whereas recent advances have demonstrated that 
synthetic routes can be employed using various synthetic peptide 
recognition element technologies (e.g., bacterial display and phage 
display) to produce bioreceptors in as little as a few days to a couple of 
weeks [5,12,18,19]. 

Coupled with the speed at which a new synthetic bioreceptor can 
be manufactured is the scale and cost of the manufactured product. 
Currently, major issues in antibody technology include time to 
supply and shelf-life stability. To avoid these standard pitfalls, ideal 
bioreceptor materials should be stable and manufacturable on demand 
[17]. In the case of ubiquitous biosensing, a plethora of platforms and 
materials integration issues will be utilized, making adaptability a key 
feature of the synthetic bioreceptor technology [1,3]. Of course, any 
synthetic reagent needs to meet affinity and specificity requirements to 
a standard of equivalency to antibody technology for practical use in 

any biosensor system and real-world operational environments full of 
interfering background species [20]. 

Not surprisingly, synthetic peptide receptors show some of the 
greatest potential as synthetic antibody alternatives, as the mechanisms 
for specific binding from peptides (protein building blocks) are similar 
to antibody-antigen interactions [21]. However, rapid development of 
stable synthetic antibody replacements can be accomplished through 
bioengineered combinatorial libraries and advanced screening methods 
followed by mass-production through standard synthesis techniques. 
Several variations of combinatorial peptide technologies, including 
yeast, phage, and bacterial display and other chemically synthetic 
techniques, are currently used to isolate synthetic reagents. In peptide 
display, a small section of protein from the surface of a biological 
system (bacterium, virus, etc.) is engineered to present a randomized 
segment of amino acids (the building blocks of proteins) [11,16,22,23]. 

However, with unconstrained bacterial peptide display technology, 
the extremely fast replication rate of bacteria is exploited, and 
biological components (e.g., modified proteins) on an E. coli cell 
surface are harnessed to produce the peptide library of binders (Figure 
3) [11,12,19]. This creates billions of individual peptide display clones, 
together creating a combinatorial library of peptide binding elements 
(i.e., candidates of synthetic affinity reagents). The large diversity 
of sequences presented by this library is then exposed to a target of 
interest, and stringency controls, in an alternating fashion. A built-in 
expression tag allows normalization of the expression library and affinity 
screening-a key enabling feature for reproducible reagent discovery. 
Although discovery is rapid, the characterization, optimization, and 
integration into assays and devices can still be a bottleneck to successful 
biosensor development using synthetic alternatives.

More recently, advances in peptide in-situ click chemistry have 
allowed scientists to develop a new class of highly manufacturable 
synthetic antibody alternatives: protein-catalyzed capture (PCC) 
Agents [7,17]. In this technology, the target protein is used as a highly 
selective catalytic scaffold for assembling its own capture agent. PCC 
Agents are assembled stepwise from comprehensive, chemically 

Desired Reagent Feature Necessary for Ubiquitous Biosensing
Robust Temperature, pH, enzyme degradation, and a long shelf life
Thermoplastic Maintains full function under extreme temperature conditions
Universal Encompasses all biosensing analytes irrespective of charge, size, etc.
Rapid Discovery Rapid development without extensive knowledge of the target analyte, critical to adapt technology to new and 

emerging threats
Manufacturing Scale Production Cost-effective production necessary for ubiquitous scale
On-Demand Production Circumvent any shelf life or supply/demand issues
Low Cost Critical for universal implementation
Adaptable Readily incorporate into variety of platforms; drop-in replacement technology
High Affinity Equivalent (or better) than antibody gold standard to meet sensing requirements
High Specificity Critical for practical application in complex environments

Table 1: Table of affinity reagent features important to ubiquitous sensing.

Standardized Universal interface capable of operation across platforms
Open and Programmable Necessary for graphical user interface and software application to be rapidly modifiable
SWAP-C For disruptive technologies, platforms must meet economic demands, including size, weight, power, and cost
Other Standard Capabilities to Leverage Integrated archival data storage (GPS, time, date, readout, images, etc.) available for after-action processing
Networked Data transmitted and recorded for further analysis and processing
Easy to Use Operation and readout on platform must be simple for broad acceptance
Multiplexed Analysis Extendable to include biothreat sensing, POC diagnostics, small molecule (cocaine, TNT, etc.), and nuclear materials

Table 2: Mobile platform reagent features important to ubiquitous sensing.
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synthesized peptide libraries that incorporate non-natural amino acids 
into the starting library to produce a final product that is highly stable, 
both on the shelf and in vivo. Additional functionality can be built into 
the initial design to produce a synthetic “drop-in replacement” that is 
highly adaptable and easily integrated into assays and sensor systems. 
The process is repeated to build biligand and triligand structures, each 
time refining the binding affinity and specificity through avidity with 
the target. The final synthetic peptide can be scaled up on-demand by 
automated chemical synthesis, avoiding the problem of batch-to-batch 
reproducibility.

Integrated Fluidics
The combined advances in microfabrication and micro-optic 

devices in optofluidics are key to enabling sensing of biological 
analytes, which are typically performed in aqueous systems. In the 
last decade, exciting and fundamental advances have been made in 
the synergistic combination of research in the fields of microfluidics 
and optics, coined “optofluidics” [24-26]. Optical techniques have 
long been used to analyze and characterize biological samples. Optical 
systems have traditionally served as a laboratory workhorse and 
include such instruments as flow cytometers, spectrophotometers, 
and microplate readers. More recently, these systems have been 
implemented in microdevices, such as on-chip waveguides and 
resonators. In parallel, we have seen the miniaturization of device 
architectures using microfabrication and clean-room techniques for 
the development of microfluidic devices [27]. Advances in the rapid 
fabrication of nano- and microfluidic devices bridge the SWAP-C 

requirement gap and enable low-cost, small-volume sample handling 
and processing. Specifically for ubiquitous and mobile biosensing 
applications, optofluidics incorporates sample preparation and delivery 
with integrated transduction. The integrated optical transduction can 
take a variety of forms, including refractive index, fluorescence, Raman 
scattering, absorption, and polarization used individually or in concert 
to generate a robust signal output [24,26,28]. 

The versatility and broad application space of optofluidics 
is evidenced by a number of recent reviews and publications 
[24,26,28,29]. Figure 4 illustrates several examples of optofluidic 
technologies that enable biosensing applications. Technologies such 
as lens-free imaging and on-chip optofluidic tomography (Figure 4A) 
may prove to be invaluable where high-throughput, 3D lab-on-a-chip 
imaging of the specimen is necessary, such as water safety monitoring 
[30]. Optofluidics is also well-poised to revolutionize the field in point 
of care (POC) diagnostics. An idealized and ruggedized POC device 

an all-encompassing device, which includes everything from sample 
introduction to electronic output [31]. Finally, the area of biothreat 
sensing has been covered by a number of reviews [20]. Figure 4C 
shows a sample surface enhanced raman spectroscopy (SERS) active, 
biothreat sensing modality [28]. This optofluidic sensor could be 
readily incorporated and modified and multiplexed into a variety of 
devices for detection of biological threats.

Personal Electronic Devices 
Widespread sensing will likely be accomplished across a variety of 

platforms such as cell phones or other personal devices (PEDs), medical 
devices, autonomous vehicles, and a host of other data collection 
systems. Table 2 outlines the primary features needed for ubiquitous 
sensing including a universal interface, and an open and programmable 
architecture. Overarching engineering goals of low size, weight, power 
and cost (SWAP-C) have been the focus of point-of-care and persistent 
surveillance in particular, but are key to widespread use. Integration 
and fusion of onboard sensor suites and reporting through an agile and 
archival network will also be necessary. Recent trends in smartphone 
and other personal electronic device platforms show tremendous 
advances over the last several years, rapidly positioning smart-phone 
technology as a ubiquitous sensing platform [32]. Smartphones are 
open and programmable personal electronic devices that are equipped 
with a growing number of powerful embedded sensors, such as an 
accelerometer, digital compass, gyroscope, GPS, microphone, and 
camera. Combined these enable new sensing applications across a 
wide variety of domains such as mobile health, transportation, social 
networking, gaming, entertainment, and education.

Most recently, simple, cost-effective, compact, and lightweight 
imaging has been achieved on personal electronic platforms through 
the use of a smart-phone in conjunction with lens-free imaging. When 
lens-free imaging is used, high-resolution images are possible on a 
field-portable platform, which is ideal for affordable POC devices and 
is broadly extendable to ubiquitous sensing applications (e.g., food 
safety, environmental monitoring, homeland security). Researchers 
are exploring the use of personal electronic devices for biosensing 
applications ranging from food and water defense to explosive 
checkpoint analysis to point-of-care diagnostics [32-34]. Bridging 
the dimensional gap between single-channel analysis to microscopy 
provides a powerful approach to portable systems.

Conclusion
To conclude, biosensing is a powerful tool used in research and 

n-terminal random peptide (15 residues)

c-terminal
controlpeptide
(usedin
expression
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monitoring

Figure 3: Conceptual depiction of an unconstrained bacterial display 
technology: n-terminal peptide display and c-terminal control for peptide 
material discovery.
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[36], (C) SERS-active optofluidic biothreat sensing diagram (Reproduced with 
permission from Nature Publishing Group) [34].
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clinical laboratories that if implemented on a global scale could 
transform our ability to monitor biological species in any location 
and environment. Specific advances in lab-on-a-chip technology to 
optofluidics as well as low-cost, highly networked mobile platforms 
open up the possibility, for the first time, to truly have a ubiquitous 
and archived biosensing network. Advances in the ability to produce 
highly manufacturable and robust synthetic bioreceptor alternatives 
now make biosensing in austere environments a reality. For example, 
smart skins used to be considered science fiction; several reports of 
patch electronic devices that stretch and conform to skin have been 
produced for physiological monitoring and drug delivery [35,36]. 
If trends continue, the fusion of these technological advances could 
revolutionize biosensing, with far-reaching impact, and make way for 
more commercial applications.
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